
www.manaraa.com

ASSURING PERFORMANCE IN E-COMMERCE SYSTEMS

Dr. John Murphy∗∗∗∗

Abstract

Performance Assurance is a methodology that, when applied during the design and development cycle, will
greatly increase the chances of an e-Commerce project satisfying user performance requirements first time
round. This paper discusses the primary risk factors in development projects, the keys to a successful risk
management programme, and the tools required. It also discusses problems that can occur in e-Commerce
systems and some examples of how these might manifest themselves. A definition and the reasoning behind a
performance assurance methodology is given, and the performance assurance methodology that is proposed
is outlined.

1. Introduction

Distributed computing has captured almost universal attention as corporations struggle to gain competitive
advantage in the information age. Currently only a small fraction of distributed computing projects are
completed within budget and on time. E-Commerce solutions promise some of the greatest advances in
information technology. However the very aspects of the e-Commerce systems that give them power and
flexibility also pose significant new challenges and risks. Their open distributed nature makes designing and
maintaining them far more complex than mainframe-based systems. In addition, most distributed computer
systems pioneer new territory in both functionality and performance. Performance Assurance is a
methodology that, when applied during the design and development cycle, will greatly increase the chances of
an e-Commerce project satisfying user performance requirements first time round.

This paper begins with some of the performance problems that can occur in e-Commerce systems, and then
continues with the benefits of having a performance assurance method. A proposed performance assurance
methodology is outlined in the next section, with a number of steps to follow to achieve the benefits of the
methodology. Some of the details of the methodology are then described, with simulation results, and finally
some conclusions and future work are presented.

2. Performance Problems in e-Commerce

There are a number of factors that increase the risk of performance problems in complex computer and
software systems, such as e-Commerce systems.

♦ Inadequately Estimating Demand. Any system, no matter how well designed, will not be able to cope
with a massive increase in user demand. Therefore it is imperative to determine, in advance and as
accurately as possible, the workload and scalability requirements of the system.

♦ Loose Performance Requirements. Poor specification of performance requirements can easily lead to a
system not achieving its performance requirements. This is because, unless performance requirements are
stated clearly and sensibly, system designers tend to ignore them in the effort to get the system to work
correctly.

∗∗∗∗ Performance Engineering Laboratory http://www.eeng.dcu.ie/~pel
School of Electronic Engineering, Dublin City University, Dublin 9, Ireland. murphyj@eeng.dcu.ie

www.manaraa.com

♦ Unbalanced Architecture. A well-performing system will in general have a balanced architecture where
no component is over- or under-utilized. For example, a car engine is sized according to the dimensions of
the car and its other components, even though more powerful engines are available. Equally, if some
system component is severely under-utilized, it is either not really needed, or the system design is
preventing its proper use.

♦ Poor Work Scheduling. The design architecture may be capable of performing the work, but if the work
is not scheduled properly or not prioritized correctly then performance problems can occur. This is
particularly important at times of high load, when low-priority operations may need to be suspended.

♦ No Live Monitoring. A system cannot be left to run unmonitored and still deliver its target performance
as time progresses. It is crucial that changes in system performance are planned for and monitored.

♦ Single Threaded Code. This represents a potential performance bottleneck in software systems. The
specifics of the application can be used to determine which parts of the system would benefit from being
multi-threaded, and therefore executed in parallel.

♦ Poor Testing. Poor testing will not find performance bottlenecks and may even give an incorrect positive
impression about the capabilities of the system.

♦ Believing Vendor's Benchmarks. Although vendors do not lie when presenting benchmark results, it
must be remembered that a vendor's benchmark is only indicative of system performance. The vendor's
benchmark may not represent the actual usage of the system or the actual system configuration.

3. Benefits of Performance Assurance

Performance assurance may be defined as a methodology integrated with the system life cycle that ensures the
system will meet all its stated performance requirements with a risk reduction factor of at least tenfold. It
further recognizes that one cannot separate functionality, performance, availability and cost in system design.
Before expanding further on the proposed performance assurance methodology, some expected benefits of its
use are outlined by way of motivation. Performance assurance benefits a project by avoiding costly mistakes.
This involves both foreseeing structural and functional problems before they arise, and detecting existing
problems in the early stages so that they can be corrected at a lower cost. Since distributed computerized
systems present so many risk factors [1], performance assurance in a computer system development project
offers great rewards. Organizations that have implemented performance assurance to address each of these
areas have had a far greater chance of developing a successful system. A successful performance assurance
methodology should begin early and continue throughout the project life cycle. For e-Commerce systems
development, this is especially true. The cost of making a change to a system increases dramatically as the
project progresses as is shown in Figure 1.

Figure 1: Project Life Cycle: Costs and Uncertainty

Making a change during the design phase is vastly simpler than making a change during development. For
example, re-designing a system on paper is always much easier than re-designing one that has already been

£ Cost to Change

Uncertainty without
Performance Assurance

Uncertainty with
Performance Assurance

Project Life Cycle

www.manaraa.com

built. If hardware and software have already been purchased, there is less latitude in what can be done to
correct a problem. The uncertainty about how a system will function and perform decreases as the project
progresses in time, but in the early stages of a project, uncertainty can be quite high. Without performance
assurance, much of the early phase of system design is “guesswork”, increasing the likelihood that costly
changes will be needed later in the development life cycle. Performance assurance reduces uncertainty,
allowing necessary changes to be implemented early or eliminating the need for changes altogether.

Late stage changes and fixes are costly for many reasons. The further into development, the more there is to
repair if a flaw appears. Database tables, stored procedures and triggers, C and C++ routines, GUI windows
and much more could all be impacted by a single change. Worse, if the system fails or needs modification
during the production phase, the cost of downtime (not to mention lost business, customers, or reputation)
must be factored into the cost of a fix. In short, performance assurance applied early can save a great deal of
time and money in the long run and boost the overall quality of an information system. Applying performance
assurance throughout the project life cycle, from planning through production, is the key to a successful
distributed system. While risk and uncertainty are especially high in the early stages of a project, they never
fully disappear. Every addition or modification to a system introduces new risk. During development, the
addition of new features affects existing code and data structures. The sooner bugs and errors are detected, the
less costly they are to fix, so new features should be tested as they are added. Likewise, during production,
the addition or removal of users, data, hardware, software and networks, and the imposition of new
requirements, all contribute to the need for continued risk management.

4. Performance Assurance Methodology

A successful performance assurance methodology covers the full project life cycle as indicated above.
Different project stages call for different approaches. The following steps constitute the key ingredients for a
successful performance assurance methodology and are shown in Figure 2. The amount of work performed at
each stage will depend on the specifics of the project. The methodology that has been developed is general
and must be customized to the specific needs of a given application.

Figure 2: Performance Assurance Methodology

♦ Define Goals: Before proceeding with the project, the performance requirements and the workload the
system is going to be subjected to must be known. The performance requirements must be driven by User
and Business requirements, but consideration must be given to the cost of achieving those requirements.
For example, on-line credit card authentication is desirable but expensive to implement, while off-line and
email notification is a more cost-effective solution. The workload the system is expected to handle must
also be defined.

♦ Dynamic Modelling: Use of Discrete Event Simulation can capture the component interactions, the
variability in the system, the effect of priorities and scheduling, the congestion of resources, the

Define Goals Dynamic
Modelling

Allocate
Performance Budgets

Benchmarking &
Performance Testing

Tuning

www.manaraa.com

nonlinearities in the system, and the probabilistic nature of demands and resources. This allows for a more
accurate prediction of response times than simple modeling techniques. Simple models cannot cope with
congestion and queueing in the system, or priority schemes (which may be used to give performance
guarantees). Scheduling can play an important part in determining system performance, but again can only
be modeled dynamically.

♦ Simulation and Modeling: Simulation provides a means of evaluating a system design before the actual
system is implemented. A model of a system, including descriptions of the hardware, software and
networks, is constructed. The proposed workload is then simulated on the model system, and statistics are
gathered. Response time, throughput, and other system performance statistics can be determined, and
often bottlenecks are pinpointed. Simply scaling the model or workload can test system scalability. Since
modifying a model or workload and performing multiple simulations is much easier and more economical
than modifying an actual system, it is an efficient method for evaluating design alternatives in the early
stages of a project. Simulation results are analyzed to determine the source of the problem, then the
system design is modified. The new system is then modeled and simulated. If new problems arise, more
modifications can be made until the system meets its requirements. Thus, modeling and simulation
address system performance and scalability in the early project phases, reducing the risk of starting out on
a wrong path. Simulation will also identify the critical components that are candidates for benchmarking.

♦ Allocate Performance Budgets: Performance Budgets are a crucial component of large projects where
software components are constructed. A performance budget is allocated to individual subsystems or
modules so that developers for those modules are aware of the performance requirements of their code.
Without performance budgets the designers do not know if they should optimize their code or not. This
can lead to un-optimized code that should be optimized, or even code that doesn’t need to be optimized
being optimized! Also at this stage it is important to define and implement metrics that will measure
system performance and usage.

♦ Benchmarking & Performance Testing: Benchmarking is the testing of critical components of the
system that have been identified as sensitive in the model. Performance testing (once the system has
completed functional testing) will highlight any final performance problems.

♦ Tuning: The operational use of the system will always be different from the expected usage predicted in
the requirements, and therefore the configuration options in the system must be tuned to achieve optimal
performance. Tuning is performed by collecting various metrics defined during the performance budget
stage and other system utilities.

5. Details of Performance Assurance in e-Commerce

Will simple models work? It is always possible to start out with simple models, but later on the move usually
has to be made to more complex models. There is no need to move to a more complex model if it is possible
to answer “No” to all of the following questions:
♦ Are there any dynamics in the system?
♦ Is there any priority scheme in use?
♦ Is parallel processing being used in the system?
♦ Is there any scheduling in the system?
♦ Is the load always small and not near capacity on any system component?
♦ Is the workload variation small?

As can be seen, few complex systems will be modelled effectively with simple models beyond the initial
stages of the design. Dynamic modelling however provides a solution. With dynamic modelling it is possible
to use discrete event simulation to capture the component interactions, the variability in the system and the
effect of priorities and scheduling on the performance. It further captures the congestion of resources, the
nonlinearities in the system, the probabilistic nature of demands and resources, and a more accurate prediction
of response times. Looking at some simple scheduling algorithms, the workload time scales and congestion of
resources shows some examples of how dynamic models can produce better results than simple models. The
details outlined in this paper were simulated using SES/workbench [2], a discrete-event simulator that allows

www.manaraa.com

hardware and software simulation. The models were created by use of its graphical user interface.
SES/workbench then compiles the graphical code to C and creates an executable. The simulation execution
platform was a cluster of Sun workstations.

Bottleneck Hopping
A bottleneck is simply the single resource of the system that limits the number of transactions that can flow
through the system at a particular time. It can be seen that for different transactions there can be different
bottleneck points, and further that these can interact with each other. Without dynamic modelling it is still
possible to find performance bottlenecks. Typically this involves running a set of tests where the loading of
the particular transactions are steadily increased, while monitoring all the systems resources, and once a
resource is overloaded then this is the bottleneck point. This can only find the current bottleneck and can be a
tedious procedure as the bottlenecks keep hopping around as they are found and addressed. This leads to a
costly iterative process. An example of a simple architecture of an e-commerce system is shown in Figure 3
and this will be used to give an illustration of bottleneck hopping.

Figure 3: Example e-commerce System

In Figure 3, the users go through the Internet to access a database, however they also traverse a web-server
that is protected by a firewall. Initially the firewall, the web-server and the database have two processors each.
The specified workload is 60 transactions per second, however due to an initial bottleneck this input rate is not
possible, and the first test loads the system with 30 transactions per second. The utilizations of all the servers
are monitored and tabulated in Figure 4.

Test 1 Test 2 Test 3 Test 4 Test 5
CPU Util % CPU Util % CPU Util % CPU Util % CPU Util %

Firewall 2 0.61 30 2 0.83 42 2 1.20 60 4 1.21 30 2 1.21 61
Web Srv. 2 1.99 100 4 2.78 70 4 3.99 100 4 3.99 100 6 4.11 69
Database 2 1.42 71 2 1.99 100 4 2.89 72 4 2.86 72 4 2.96 74
Number In 5011 6679 4931 6679 9828
Number Out 4724 6640 4917 6640 9821
Throughput 0.94 0.99 1.00 0.99 1.00
Input Rate 30 45 60 60 60

Figure 4: Bottleneck Hopping

From Figure 4, Test 1 it can be seen that the web-server is overloaded (100%) while the other servers are not
(Firewall is 30% and Database is 70%). It can also be seen that the throughput for this rate is 94% so that most
of the input transactions are in fact getting through the system. The usual remedial action would be to increase
the number of processors in the web-server from two to four. Test 2 shows the results in this action. It was
possible to increase the loading on the system from 30 transactions per second to 45 per second while still
achieving 99% throughput. The utilization on the web-server has been decreased to 70% and the firewall is
still only utilized at 42%, but the database is now the bottleneck (100% utilization). At this stage either the
number of processors is increased in the database from two to four (Test 3), or all the servers are upgraded
from two to four (Test 4). However both of these remedial actions only shift the bottleneck from the database

Internet Users

Firewall DatabaseWeb-
Server

www.manaraa.com

back to the web-server while allowing the full input rate has been attained at 60 transactions per second. When
the bottleneck arrives back to the web-server this is a serious case and can not be predicted from the serial
testing of the system. It is likely that the project managers will wonder what understanding of the system is in
place and when will the problems be solved. As can be seen from Test 5, this is done by increasing the
number of processors from four to six in the web-server. A better understanding of the system could have
been gained, and the iterative testing could have been avoided, if a dynamic model was used.

Scheduling Priorities
In complex systems there any many different types of transactions present concurrently in the system, many
systems could have hundreds of types. Some of these transactions are more important than other ones, and so
the uses of either priority schemes or scheduling algorithms are widespread. While it is possible to take into
account some of these issues with simple models in a rather crude way, it is not possible to fully capture the
effects that these schemes have on the response times or potential throughput. To illustrate the benefits of the
proposed methodology, we simulate a single server with four different transaction types as shown in Figure 5.

No Priority High Priority
To Orders

Low Priority
To DownloadsTransaction

Type Utilization Response
Time

Utilization Response
Time

Utilization Response
Time

Change 12.0% 3.80 13.9% 4.88 12.6% 0.71
Download 70.3% 3.98 68.8% 4.98 71.1% 6.21
Joining 9.3% 3.63 9.8% 4.78 10.0% 0.63
Order 2.3% 3.58 2.3% 0.43 2.5% 0.60
Total 93.9% 94.8% 96.2%

Figure 5: Priority Allocation

As can be observed from Figure 5, with no priority scheme in place the response times of all the transactions
types are similar and between 3.58 and 3.98 seconds. If the "Orders" are given high priority over all the others
then the response time for them drops from 3.58 seconds to 0.43 seconds, while the other transaction types
increase to between 4.78 and 4.98 seconds. If on the other hand the "Downloads" are given low priority then
the average response time for these increases from 3.98 to 6.21 seconds, while all the other transaction types
decrease to between 0.60 and 0.71 seconds. Due to the random number generators in the simulations the total
load in the three sets of results are slightly different.

Workload Time-scales
Apart from the usual daily variation in workloads, and the workload variation during the day for most non-
scheduled workload, there are other issues with the time scales. If the workload is known at one time scale
(for example one month) and the response times are known at another time scale (for example seconds) then it
is difficult to transform the workload to that new time scale. An exponentially distributed Inter-Arrival Time
(IAT) generates the workload for the example in this paper. One week's data was generated which consisted of
60,000 samples and the results are shown in Figure 6.

Duration Peak
Number

Average Inter-
Arrival Time

Apparent
Load

1 Day 8725 9.82 100.00%
1 Hour 402 8.88 110.58%

1 Minute 17 3.50 280.57%

Figure 6: Time-Scale Changes

As can be seen the average inter-arrival time over one day is given as 9.82 seconds, but if the peak hour is
examined then this average IAT decreases to 8.88 seconds which is an apparent increase in the workload of

www.manaraa.com

over 10%. When the peak minute is examined the average IAT decreases to just 3.5 seconds which has nearly
tripled the apparent workload of the system. The conclusion of this is that when the response time-scale is
different to the workload time-scale then one has to be extremely careful.

No Congestion Means No Queueing
The view is often held that if the utilization on any of the devices is not near 100% then there is no large delay
or performance problem. However as an example if there is an input rate of one transaction every minute and
the server take 30 seconds to process it, the server is loaded to only 50%. Some would claim that there is no
queueing in this system, however in the normal case of exponential service rates and Poisson arrival rates this
is not the case. In fact there will be 30 seconds queueing and 30 seconds process time to give a total response
time of 60 seconds. Furthermore if it had taken 0.9 minutes to process it then the queueing delay alone would
be 8.1 minutes. The result of this is that there can be substantial queueing delays even when there are no
devices with high utilization present in the system.

6. Conclusions and Future Work

The performance problems associated with e-commerce systems have been presented along with the benefits
of performance assurance, and a proposed methodology to achieve that assurance. Some details of the
performance assurance methodology are presented along with preliminary simulation results to illustrate the
points being made on bottleneck hopping, priority and scheduling algorithms and relevance of time scales and
queueing in the system resources.

Some future work would be to further enhance the methodology and to assess the various commercial tools
available for performance evaluation under a number of headings. For example:
♦ Price
♦ Ease of Use - How easy is it to create test scripts?
♦ Security - Will the tool work with the various levels of security?
♦ Points of Measurement
♦ What response time does it measure?
♦ Number of Virtual Users

How many users can be created?
Can users do different things?
Does the tool emulate different IP addressees?
Does it recognize errors from the web-server?

♦ How good are the results captured and presented?

7. References

[1] “Why Worry about Performance in E-Commerce Systems”, Ed Upchurch & John Murphy, Proc. of 16th

UK IEE Teletraffic Symposium, May 2000.

[2] Scientific & Engineering Software, SES/workbench Reference Manual, Release 3.2, 1998.

	Figure 1: Project Life Cycle: Costs and Uncertainty
	Figure 2: Performance Assurance Methodology
	Figure 3: Example e-commerce System
	Firewall
	Number In
	Figure 4: Bottleneck Hopping
	Peak Number

